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Abstract: The aim was to develop an antibiotic dry powder inhaler formulation that delivers 
a high drug load to the lower respiratory tract. Particle size of the colistin sulphate (colistin) 
formulations was determined by laser diffraction. The spray dried formulations were made 
with a Büchi 190 spray drier, where varied concentrations of the amino acid L-leucine were 
added. An in-vitro method was used to determine the aerosolisation behaviour of each 
formulation from a Rotahaler and then analysed using a validated HPLC assay. Images of the 
formulations were taken with a scanning electron microscope. The surface energy of each 
formulation was determined through inverse gas chromatography. Spray drying colistin 
(SDC) increased the number of particles <6.5 μm from 23.6% to 83%. This contributed to a 
significantly (p<0.001) increased fine particle fraction (FPF) (from 15.3% to 38.8%). To 
further improve the FPF, the colistin formulation was co-spray dried with L-leucine at 
concentrations of 5, 10 and 20%, which resulted in FPF values of 44.9%, 35.7% and 49.6%, 
respectively, although these FPF values were not significantly (p>0.05) different from those 
of SDC. The spray dried colistin particles appeared highly corrunculated and formed 
cenospheres. Among the spray dried formulations there were no apparent difference in the 
appearance of the particles. There was a correlation between dispersion performance and total 
surface energy, with the original colistin obtaining a significantly (p<0.001) higher total 
surface energy, 307.6 mJ/m2 with a dispersion of 15.3% compared to SDC total surface 
energy, 161.5mJ/m2 with a dispersion of 38.8%. Therefore a lower total surface energy 
increases dispersion efficiency. This study has lead to the development of inhalable colistin 
dry powder formulation that delivers approximately 40% efficiency from a simple passive 
inhaler device. Particle engineering, such as altering particle size, surface morphology and 
surface energy, can play a significant role in the extent of drug aerosolised to the lower 
respiratory tract. 
 
Introduction: 
Antibiotics used for the treatment of lung infections can be delivered by the intravenous, oral 
and other routes, but inhalation may provide a better targeted route for lung infections. 
Colistin, a cyclic polypeptide linked to a fatty acyl tail, is an old antibiotic with potential 
nephro- and neuro-toxicity when traditionally administered intravenously. However, with its 
high efficacy, it has received a new lease of life (1), notably if dose can be minimized by 
direct delivery to the lung. Dry powder inhalers have the ability to deliver high loads of 
antibiotics directly to the site of infection in the lungs (2). To increase the efficiency of dry 
powder inhalers, properties such as particle size, particle morphology and surface energy can 
be altered (3,4).  



Spray drying may increase the dispersion of inhaled drugs (4), and for example co-spray 
drying the drug with leucine has lead to reduced powder density and an increase in 
dispersibility (4). However, there is yet to be a fully satisfactory explanation of how spray 
drying increases this dispersibility. There have been claims that the addition of leucine in 
spray dried formulations alters the surface energy of the particles allowing the formulation to 
better aerosolise (4). In previous studies, it was found that aerosol performance could be 
related to surface energy due to its influence on inter-particulate forces (5), where two 
condensed systems interact at the interface it creates thermodynamic work of adhesion, that is 
dependent on the individual surface energy of the two components (6). The surface energy 
can determine the relative strength of adhesion and agglomeration and thus the extent of 
dispersion. Also, there have been claims that spray drying with leucine alters the drug particle 
morphology, where the particle is no longer spherical and exhibits a wrinkled dimple effect 
(7), thereby changing the contact geometry and aerodynamics of the particles to increase 
dispersibility. Delivery and deposition in the lower region of the lungs is dependent on the 
powder’s dispersibility which is controlled by the interparticle forces (3). Therefore, altering 
the surface morphology and surface energy of drug particles should affect the interparticle 
and interfacial forces, therefore altering the amount of drug to be delivered (3). 

The aim of this research was to investigate whether the increase in dispersion is due to the 
change in surface energy or the changes in morphology of the drug particles. 

Materials and Methods: 
Spray dried powders containing colistin sulphate (Zhejiang Shenghua Biok Biology Co., Ltd. 
China), together with varying percentages of L-leucine, (analytical grade, from Sigma-
Aldrich, USA) were obtained using a Buchi Mini-Spray Drier 190 (Buchi AG, Switzerland). 
L-leucine was added to assess its potential to improve aerosolisation behaviour. Aqueous 
solutions were prepared containing a total of approximately 2% w/v solids loading where this 
solute comprised colistin sulphate, or colistin sulphate:L-leucine in ratios 95:5, 90:10 or 
80:20 w/w.  These were spray dried at 2 mL/min liquid flow rate, with inlet temperature 
adjusted to maintain an outlet temperature of approximately 60°C and with an atomiser air 
flow rate of 600 L/hr, and aspirator set to maximum.  Particles were collected and analysed 
for various physico-chemical properties. The particle size distributions were determined by 
laser diffraction as suspensions in ethanol (Malvern Mastersizer S, Malvern Instruments, 
UK). Particle size and morphology was assessed by electron microscopy (Phenom, FEI, 
USA). Inverse Gas Chromatography (IGC: Surface Measurement Systems Ltd., UK) was 
used to determine the surface energies of the different particles.  In vitro dispersion was 
measured by aerosolising 15 mg of formulation from a size 3 gelatin capsule (Capsulgel, 
Australia) in a Rotahaler device (GSK, UK), with at least 5 replicates using a twin stage 
impinger (TSI: Copley UK).  Air flow was set to 60 L/min.  
  



Results and Discussions: 
The particle size distribution of the spray dried colistin formulation shows a dramatic shift in 
particle size from colistin as received to spray dried colistin (SDC), with 78% of the mass of 
spray dried colistin formulations being <6.4 µm (Figure 1), which indicates this percentage of 
SDC filled in capsules could potentially be delivered to the lower respiratory system, and 
similarly to stage 2 of the TSI, where cut-off is <6.4 µm at 60 L/min (8)  
 

 

 

 

 

 

 

 

 

 

Figure 1 – Particle size distribution 

Figure 2 (a) shows colistin as received to be coarse irregular particles, whereas figure 2 (b-e) 
shows the spray dried formulations as a mix of wrinkled ‘pea shaped’ particles and 
cenospheres (hollow particles). The wrinkled particles are proposed to form when the liquid 
at the surface of the droplet evaporates in the hot air from spray drying and a coherent 
rubbery shell forms. As drying proceeds, internal pressure causes the shell to swell, but as the 
internal pressure then decreases, the particle collapses on itself, forming wrinkled particles. 
Cenospheres appear as particles with holes formed in the shell during the drying process 
allowing the pressure to escape so the particles neither expand nor collapse. From these 
images it can be seen that after spray drying colistin, the particles are very different in 
morphology from the starting powder form. The particle size and morphology seems to be 
consistent across all the spray dried images. The spray dried SEM images are consistent with 
particle size distribution as seen in Figure 1, with majority of the particles being less than 10 
µm.  
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